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ABSTRACT: A new chemically oriented mathematical
model for the development step of the LIGA process is
presented (LIGA is an acronym for the German words
Lithographie, Galvanoformung, and Abformung). The key as-
sumption is that the developer can react with the polymeric
resist material to increase the solubility of the latter, thereby
partially overcoming the need to reduce the polymer size.
The ease with which this reaction takes place is assumed to
be determined by the number of side-chain scissions that
occur during the X-ray exposure phase of the process. The
dynamics of the dissolution process are simulated by the
solution of the reaction diffusion equations for this three-
component, two-phase system, the three species being the
unreacted and reacted polymers and the solvent. The mass
fluxes are described by multicomponent diffusion (Stefan–
Maxwell) equations, and the chemical potentials are as-
sumed to be given by the Flory–Huggins theory. Sample
calculations are used to determine the dependence of the
dissolution rate on key system parameters such as the reac-
tion rate constant, polymer size, solid-phase diffusivity, and

Flory–Huggins interaction parameters. A simple photo-
chemistry model is used to relate the reaction rate constant
and the polymer size to the absorbed X-ray dose. The result-
ing formula for the dissolution rate as a function of the dose
and temperature is fit to an extensive experimental database
to evaluate a set of unknown global parameters. The results
suggest that reaction-assisted dissolution is very important
at low doses and low temperatures, the solubility of the
unreacted polymer being too small for it to be dissolved at
an appreciable rate. However, at high doses or at higher
temperatures, the solubility is such that the reaction is no
longer needed, and dissolution can take place via the con-
ventional route. These results provide an explanation for the
observed dependences of both the rate of dissolution and its
activation energy on the absorbed dose. © 2005 Wiley Period-
icals, Inc. J Appl Polym Sci 97: 25–37, 2005
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INTRODUCTION

LIGA (an acronym for the German words Lithographie,
Galvanoformung, and Abformung) is an emerging pro-
cess for the fabrication of high-aspect-ratio microstruc-
tures. The lithography step actually involves two sep-
arate tasks. A thick film of a poly(methyl methacry-
late) (PMMA) resist material is first exposed to
synchrotron X-rays through a patterned absorber
mask, and the exposed areas are then developed (dis-
solved) by immersion in the so-called GG developer,
which is a complex mixture of four liquid chemicals.
The resulting trenches are then filled with a suitable
metal or alloy by electrodeposition, the remaining
PMMA is dissolved in a strong solvent, and the fin-
ished metal part is used as a template for mass pro-
duction. LIGA has great promise for the efficient fab-
rication of microparts, but a good deal remains to be

done in the areas of process improvement and opti-
mization. Much of the progress to this point has been
achieved through experimentation and empiricism,
and it is clearly desirable to have a more fundamental
understanding of the physics and chemistry involved.
This applies particularly to the polymer dissolution
step, which is the primary focus of this article.

It has long been known that the process of polymer
dissolution involves more than simple mass transfer at
the solid–liquid interface. The complication arises
from the fact that a polymer molecule cannot be re-
leased from the solid phase until its entanglements
with other molecules have been relaxed or broken.
Furthermore, the polymer generally has a finite capac-
ity to imbibe a solvent. Therefore, the first step in the
dissolution process is the penetration of solvent mol-
ecules into the polymer matrix; this gives rise to a
swollen gel layer in which the polymer fragments are
more mobile. These fragments can then diffuse to the
interface and pass into the liquid phase. There may or
may not be a sharp demarcation between the gel and
dry polymer (glass) layers; if there is, then of course
one must deal with the existence of three separate
phases.

Although this qualitative picture of polymer disso-
lution is generally accepted, attempts to model the
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process in any detail have been quite scarce, especially
in the context of LIGA. The most comprehensive
model proposed thus far is probably that of Papanu et
al.1,2 In their approach, transport in the gel layer is
modeled as simple Fickian diffusion. An effective sur-
face concentration at the gel–solvent interface is com-
puted by the addition of an elastic term to the stan-
dard Flory–Huggins expression for the chemical po-
tential, and the movement of this interface is governed
by an equation involving the polymer disentangle-
ment rate as estimated from reptation theory. For
so-called case II penetration, in which there is a well-
defined glass layer, the movement of the gel–glass
interface is assumed to be related to the stress level in
the polymer. A somewhat similar model was pre-
sented by Herman and Edwards,3 who used the rep-
tation model to estimate the stresses brought by sol-
vent penetration into the polymer and then argued
that the dissolution rate should be limited by stress
relaxation. More recently, Hasko et al.4 formulated a
streamlined version of the Papanu model and used it
with some success to describe the dissolution of
PMMA in mixtures of methyl isobutyl ketone and
isopropyl alcohol.

The foregoing models treat polymer dissolution as
essentially a physical (rather than chemical) process,
and they were not developed with LIGA in mind.
Thus, they imply that a polymer will dissolve more
quickly after irradiation simply because its molecular
weight has been reduced. However, Schmalz et al.5

presented strong evidence that the development step
of LIGA is more complicated than this. First, they
noted that an irradiated sample of PMMA will dis-
solve more quickly in the GG developer than a non-
irradiated sample of the same molecular weight. They
also noted that the dissolution rate is affected by the
tacticity of the polymer, everything else being equal.
In their view, the developer acts as more than just a
solvent; it also initiates a chemical reaction with the
polymer that converts the latter into a more soluble
form. This reaction is thought to occur preferentially
in irradiated parts of the polymer molecule, in which
the nucleophilic developer has easier access because of
scission of, or damage to, the ester side chains. If this
scenario is correct, then a purely physical description
of the dissolution process will not be adequate.

The purpose of this work is to formulate and solve
a chemically oriented model for polymer dissolution
that incorporates the ideas just described. First, a ther-
modynamically consistent set of governing equations
for the multicomponent, multiphase dissolution pro-
cess is derived. The equations are then solved numer-
ically for a number of sample cases to determine the
dependence of the dissolution rate on the key physical
parameters. A simple photochemistry model is also
proposed to relate the postexposure polymer proper-
ties to the absorbed radiation dose. This yields a rather

complex expression for the dissolution rate as a func-
tion of the dose and the temperature, and the con-
stants in this formula are evaluated by the fitting of the
formula to an extensive experimental database. The
results are analyzed to determine the relative impor-
tance of reaction-assisted dissolution under different
exposure and development conditions.

MODEL FORMULATION

The model of reaction-assisted polymer dissolution to
be presented here is based on two principal assump-
tions: (1) the removal or alteration of polymer side
chains by X-ray irradiation during the exposure step
leaves the polymer molecule susceptible to chemical
attack by the developer solution, and (2) this chemical
reaction converts the polymer into a new form that has
greater solubility. Of course, another effect of the X-
rays is to reduce the average molecular weight of the
polymer via main-chain scissions, and this in itself can
enhance the solubility; however, as already noted,
there is compelling evidence that specific chemical
effects are also involved. In any case, this model will
reduce to one of purely physical dissolution if the rate
constant for the chemical reaction is set to zero.

With these assumptions in mind, we can surmise
that the first step in the dissolution process is, as usual,
the diffusion or permeation of solvent molecules into
the polymer matrix; this gives rise to the gel layer,
which is a familiar feature of such systems. The volu-
metric (as opposed to interfacial) contact between the
polymer and the developer then allows the aforemen-
tioned chemical reaction to take place at a rate that is
determined by the local concentrations of both species.
Both the original and converted forms of the polymer
can diffuse across the gel layer and pass into the liquid
phase, although the latter is favored because of its
enhanced solubility. Finally, the dissolved polymer of
either type diffuses across the liquid-phase boundary
layer and is swept away into the bulk solvent. The loss
of polymer molecules from the solid phase causes the
solid (gel)–liquid interface to recede, and the speed
with which it does so is defined as the development
rate.

Although the GG developer that is normally used in
LIGA is a mixture of four distinct chemicals, it will be
treated as a single species with suitable average prop-
erties in this model. On the other hand, the original
and converted forms of the polymer will be treated as
distinct because the differences in their behavior are a
crucial feature of the model. Thus, the analysis must
describe multicomponent diffusion with a simulta-
neous chemical reaction in a three-component, two-
phase system. (There is assumed to be no sharp de-
marcation between the gel layer and the dry, unre-
acted polymer, so they are treated as parts of the same
solid phase.) Furthermore, the equations must account
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for the highly nonideal nature of polymer–solvent
mixtures, and the descriptions of diffusion and inter-
facial equilibrium must be thermodynamically consis-
tent.

The basic governing equations for this system are
the transient material balances for the three species
present. As is customary in problems involving poly-
mers, the model will be formulated in terms of volu-
metric variables, under the assumption that all pro-
cesses are volume-conserving. In one dimension, the
mass balances have the following form:

��i

�t �
�Ni

�z � V̇i (1)

where t is the time, �i is the volume fraction of species
i, Ni is its volume flux with respect to fixed coordi-
nates, V̇i is its volumetric production rate, and z is the
spatial coordinate normal to the interface. The absence
of a convective term is due to the overall continuity
equation and to the fact that the dry polymer is as-
sumed to be attached to a stationary substrate. Be-
cause the equations for the three species are not all
independent, only two of them need be solved. Letting
subscripts 1, 2, and 3 denote the solvent, unconverted
polymer, and converted polymer, respectively, we can
arbitrarily choose to solve eq. (1) for i � 1 and i � 2.

Next, it is necessary to relate Ni to the composition
gradients within the system. Because there are three
components and because the mixture is expected to be
highly nonideal, Fick’s law is wholly inadequate; in its
place, we use the volumetric version of the general
multicomponent diffusion equation,6 which is the an-
alogue of the Stefan–Maxwell equation for gases:

�i

��i

�z �
RT
c �

j

1
Vj�ij

��iNj � �jNi� (2)

where �i and Vi are the chemical potential and molar
volume, respectively, of species i; Dij is the true binary
diffusion coefficient for species i and j; R is the uni-
versal gas constant; T is the absolute temperature; and
c is the overall molar concentration of the mixture:

c � �
j

�j

Vj
(3)

Equation (2) can be inverted to give explicit expres-
sions for the fluxes:

N1 �
1

RT �D12

��2

�z � D13

��3

�z � (4)

where

D12 �
cV1

��
�12�2�1 � �1

V2
�13 �

�1

V1
�23� (5)

D13 �
cV1

��
�13�3�1 � �1

V3
�12 �

�1

V1
�23� (6)

�� �
�1

V1
�23 �

�2

V2
�13 �

�3

V3
�12 (7)

It should be emphasized that coefficients Dij, unlike
�ij, are not symmetric in i and j.

To complete the formulation, the chemical poten-
tials must now be expressed in terms of the volume
fractions. This can be done with the multicomponent
Flory–Huggins equations,7 which involve as physical
parameters the molar volume ratios, mij � Vi/Vj, and
a set of interaction parameters, �ij. Thus, for example,

�1 � �1
0�T� � RT�ln �1 � �1 � �1��1 � �12�2 � �13�3�

� m12�2 � m13�3 � m12�23�2�3� (8)

where �1
0(T) is the chemical potential in the pure state.

The expressions for �2 and �3 can be obtained simply
by the permutation of the indices. Clearly, because mji

is equal to 1/mij and mjk is equal to mjimik, there are
only two independent values of m. In addition, the
Flory–Huggins theory shows that �ji is equal to mji�ij,
so the number of independent � values is three. Fur-
thermore, if these binary interaction parameters can be
expressed in terms of individual solubility parameters
in the manner indicated by Prausnitz,8 then it can be
readily shown that

�23 � m21��12
1/2 � �13

1/2�2 (9)

Thus, only �12 and �13 need be specified.
The substitution of the Flory–Huggins chemical po-

tentials into eq. (4) for an isothermal system gives

N1 � K11

��1

�z � K12

��2

�z (10)

where

K11 � D13��
1
�3

� 1 � �1 � �3 � �1��31 � m31 � �32�2

� m32�� 21�2� � D12��1 � �2���21 � �23�

� m23�31��1 � �3� � m23 � m21� (11)
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K12 � D13��
1
�3

� 1 � �1 � �3 � �2��32 � m32 � �31�1

� m32�21�1� � D12� 1
�2

� 1 � �1 � �3 � �2��23

� m23 � �21�1 � m23�31�1� (12)

The corresponding expression for N2 can be obtained
by the interchanging of indices 1 and 2 in eqs. (10),
(11), (12), (5), and (6). N1 and N2 are then given in
terms of gradients of �1 and �2 alone, as required.
Obviously, the flux equations are far more compli-
cated than those that would have been obtained by the
simple application of Fick’s law.

To complete the system of governing equations, we
need an expression for the homogeneous reaction rate
V̇i in eq. (1). Although the precise nature of the reac-
tion is not known, the rate of any attack of the solvent
on the exposed polymer should depend on the local
concentrations of both species. In the absence of any
information to the contrary, it is simplest to assume
that each dependence is first-order:

V̇1 � �k�1�2 (13)

Here k is a rate constant that presumably depends on
both the temperature and the extent of damage done
to the polymer by X-ray irradiation. Because V̇i is a
volumetric reaction rate, the corresponding expres-
sion for V̇2 is

V̇2 � �m21k�1�2 (14)

The system consisting of eqs. (1) and (10), written for
both species 1 and species 2, can now in principle be
solved. The progressive dissolution of the polymer
layer is, of course, a time-dependent process; however,
we are interested primarily in the situation in which
the solid–liquid interface recedes at a steady rate. In
such a case, the governing equations should be time-
independent when written in a coordinate system at-
tached to the interface, as long as there is a significant
expanse of dry polymer between the gel layer and the
substrate. This suggests that we introduce a similarity
variable � � z � ut, which measures the distance from
the interface, the assumption being that the volume
fractions and fluxes will depend on � alone and not on
z and t individually. The (constant) interfacial velocity
u is not known a priori and must be determined as part
of the solution to the problem. (Of course, because the
interface moves to the left as the polymer dissolves,
the computed value of u will be negative, so the dis-
solution rate is 	 � �u.) It is also useful to introduce
fluxes Ji � Ni � u�i with respect to the moving inter-

face. In terms of the new variables, the equations to be
solved become

dJ1

d�
� �k�1�2 (15)

dJ2

d�
� �m21k�1�2 (16)

J1 � K11

d�1

d�
� K12

d�2

d�
� u�1 (17)

J2 � K21

d�1

d�
� K22

d�2

d�
� u�2 (18)

We must still specify the boundary conditions for the
problem. Because there are four first-order differential
equations in each of two phases, it might appear that
eight such conditions are required. However, because
the interfacial velocity u is not known, one additional
boundary condition is needed to fix its value, and u
can be termed an eigenvalue of the problem. We ob-
tain four of the necessary boundary conditions by
specifying the mixture compositions at the outer edges
of the problem domain. Referring to Figure 1, we must
have the pure solvent at the right-hand edge of the
liquid-phase boundary layer, so

�1�
�� � 1 (19)

�2�
�� � 0 (20)

Likewise, because there is dry, unconverted polymer
in the region to the left of the gel layer, we have

�1��
�� � 0 (21)

�2��
�� � 1 (22)

An important distinction between the layer thick-
nesses 
� and 
� should be noted. Whereas the former
is regarded as a real physical quantity whose value is
determined by the hydrodynamics (e.g., stirring) in
the bulk liquid, the latter is an artificial quantity that is

Figure 1 Geometrical configuration used for the analysis of
polymer dissolution.
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introduced for computational convenience. In princi-
ple, boundary conditions (21) and (22) should be ap-
plied at � � �	, and in practice 
� must be so large
that any further increase in its value causes no change
in the solution. This approach ensures that all fluxes
with respect to fixed coordinates are zero in the dry
polymer layer, as they must be.

The remaining five boundary conditions are im-
posed at the solid–liquid interface. The fluxes relative
to this interface must be continuous, so

J1�0�� � J1�0�� (23)

J2�0�� � J2�0�� (24)

On the other hand, the volume fractions will not be
continuous at � � 0. As is customary, we assume that
the two phases are in thermodynamic equilibrium at
this point, and so the chemical potential of each spe-
cies is continuous:

�1�0�� � �1�0�� (25)

�2�0�� � �2�0�� (26)

�3�0�� � �3�0�� (27)

The chemical potentials are evaluated from eq. (8) and
its analogues, with �3 everywhere replaced by 1 � �1
� �2. Equations (25)–(27) are all independent, so each
of them must be imposed to satisfy the condition of
equilibrium. On the other hand, the analogue of eqs.
(23) and (24) for species 3 would be redundant be-
cause the fluxes Ji always sum to a constant, namely,
�u.

SOLUTION METHOD

The nonlinear boundary value problem, consisting of
eqs. (15)–(27), presents a significant computational
challenge. The most straightforward approach is to
write the differential equations in finite-difference
form and to use a packaged routine to solve the re-
sulting large system of algebraic equations. Unfortu-
nately, this method seems to be incapable of resolving
(with a reasonable number of grid points) the ex-
tremely sharp concentration gradients that are typi-
cally observed, even when adaptive meshing is em-
ployed. The alternative is to use a shooting method, in
which the differential equations for each phase are
integrated numerically from one side to the other, and
any unknown initial values or parameters that are
needed for the integrations are guessed and then ad-
justed to satisfy the boundary conditions at the end-
points. This method also involves several difficulties,
however. First, the numerical integrations tend to be

unstable, in the sense that modest errors in the
guessed quantities can cause a computed solution to
blow up before the endpoint is reached. Obviously,
this can require the initial guesses to be quite accurate,
so the iteration process is not as robust as one would
like. Second, if the iteration is fully automated via a
nonlinear system solver, then one or more of the un-
known interfacial volume fractions can become nega-
tive, and this will also cause the computation to fail
[cf. eq. (8)]. This has led to the adoption of a two-tier
shooting method, which will now be described.

For specified values of the physical parameters for
the problem (in particular, the Stefan–Maxwell diffu-
sivities, the reaction rate constant, and the Flory–Hug-
gins parameters), the first step in the computation is to
guess a value for �2(0�). This is the quantity that is to
be adjusted in the outer loop of the shooting method.
For the chosen value, equilibrium relations (25)–(27)
are then solved via the SLATEC routine DNSQE to
find �2(0�), �1(0�), and �1(0�), so that all of the inter-
facial volume fractions are known (tentatively). The
remaining three quantities that are needed to carry out
the numerical integrations, namely, J1(0), J2(0), and u,
are then estimated; these are the adjustable parameters
in the inner loop of the shooting method. The stiff
equation solver DASSL9 is used to integrate eqs. (15)–
(18) outward from � � 0� to � � 
� and also from �
� 0� to � � �
�. The SLATEC routine DNSQ is then
used to adjust J1(0), J2(0), and u to satisfy exterior
boundary conditions (19)–(21). The remaining condi-
tion, eq. (22), is satisfied in the outer loop by iteration
on �2(0�). This is accomplished via the SLATEC root
finder DFZERO, which allows the user to place
bounds on the solution; this eliminates the danger of
taking the logarithm of a negative argument in the
equilibrium relations. Finally, the entire process is re-
peated for progressively larger values of 
� until the
solution (in particular, the value of u) shows no fur-
ther change.

SAMPLE RESULTS

The procedure just described allows one to compute
the dissolution rate 	 � �u for any set of values of the
physical parameters characterizing the system. Of
course, most (if not all) of these parameters will not be
known a priori, so it will be necessary at some point to
fit the model predictions to experimental data. Be-
cause 	 is generally reported as a function of the
development temperature and the absorbed X-ray
dose, two steps must be taken before the fitting pro-
cedure can be carried out. First, model results must be
computed for a number of test cases to infer the quan-
titative relationship between 	 and the key physical
parameters. Next, separate submodels must be used to
relate these parameters to the temperature and the
dose. The first of these tasks will now be discussed.
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It follows from the model formulation that dissolu-
tion rate 	 will depend on the following parameters:
m21, m31, �12, �13, �23, �12, �13, k, and 
�. A few simple
approximations can be made to reduce the size of this
list. First, because the postulated chemical reaction
does not alter the length of the polymer chain, it is
reasonable to take m21 � m31 � m and �12 � �13 � �.
Actually, � can in general be a function of the mixture
composition, and one would certainly expect to ob-
serve different values in the gel and liquid layers.
Therefore, we take � to be piecewise constant, with
values �� and �� for � 
 0 and � � 0, respectively.
The polymer–polymer diffusivity �23 should be un-
important by comparison; in the absence of further
information, we take �23 � �/m1/2 in each phase.
Finally, for sample calculations, 
� and �� can be set
equal to unity with no loss of generality, as this merely
serves to set the length scale and timescale for the
problem. In other words, each of the remaining pa-
rameters becomes a dimensionless quantity (if it is not
already) scaled by the characteristic length 
�, the
characteristic time 
�2/��, or both. In this way, the
list of parameters to be investigated is reduced to m,
��, �12, �13, and k.

Before the results of the dissolution simulations are
shown, it is necessary to digress for a discussion of
polymer solubility, as this is one of the crucial features
of the model. Within the context of the Flory–Huggins
theory, the solubility of a single polymer in a given
solvent depends entirely on the values of m21 � m and
�12 � �, as determined by the solutions to eqs. (25) and
(26). The form of this dependence is shown in Figure
2, which is a more detailed version of Figure XX-13 in
ref. 10 Each curve gives the values (if any) of �2 in
equilibrated liquid and solid phases as functions of �
for a fixed value of m. Because m is a rough measure of
the polymer chain length, the plot shows that the
polymer solubility increases very rapidly as the mo-
lecular weight decreases, whereas the nominally solid

phase contains a significant amount of solvent. How-
ever, the solubility also increases very rapidly as �
decreases and the two chemical species become more
compatible. In fact, if � is sufficiently small, then the
polymer and the solvent are miscible in all propor-
tions, and for � � 0.5, this is true, regardless of the
polymer molecular weight. Our model assumes that
both of these avenues for improving solubility are
operative in LIGA: chain scissions brought about by
the X-rays obviously reduce the molecular weight,
whereas the chemical reaction between the polymer
and the developer lowers the value of �.

Actually, because both the unconverted and con-
verted forms of the polymer are present simulta-
neously during the development process, the equilib-
rium plot in Figure 2 is not sufficient to represent the
situation; instead, a standard ternary phase diagram is
needed. A typical example, as computed from eqs.
(25)–(27), is shown in Figure 3. Here the Flory–Hug-
gins parameters are fixed, and the diagram gives, for
any overall mixture composition, the number of
phases present at equilibrium as well as their individ-
ual compositions. For any point outside the dome-
shaped region, there is only one phase, and thus there
is complete miscibility of the three components.
Within the dome, the system splits into two phases,
the compositions of which are given by the ends of a
tie line passing through the original point; the set of tie
lines can be constructed from the conjugate line, as
indicated. Polymer 3 by itself is miscible in all propor-
tions with the solvent, whereas polymer 2 is not, in
agreement with Figure 2. The fact that even small
amounts of polymer 2 tend to give rise to incomplete
miscibility suggests that a dissolution process involv-
ing these species will show a well-defined solid–liquid
interface, which is an assumed feature of the model.

Returning now to the dynamics of dissolution, Fig-
ure 4 shows computed concentration profiles for a
representative case. The Flory–Huggins parameters
are the same as those in Figure 3; the solid-phase

Figure 3 Ternary phase diagram for a single-solvent/dual-
polymer system (m � 20, �12 � 1.1, �13 � 0.7).

Figure 2 Equilibrium phase compositions for a solvent–
polymer system from the Flory–Huggins theory.
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diffusivity is four orders of magnitude smaller than
that in the liquid, and the reaction rate constant has a
modest but surprisingly influential value. Obviously,
both forms of the polymer have very low concentra-
tions in the liquid phase, so the tie line representing
the interfacial compositions is very close to the hori-
zontal axis in Figure 3. Instead of rising smoothly from
its equilibrium value at � � 0�1 to unity at � � �	, the
volume fraction of unconverted polymer is severely
depleted just to the left of the interface as a result of
the chemical reaction. The steep gradients that are
produced by even this modest value of k are a good
indication of the difficulty of the computational prob-
lem.

Of course, the primary item of practical interest is
not the form of the concentration profiles but rather
the value of the interfacial velocity u, which is ob-
tained as part of the solution. Figure 5 shows the
computed variation in 	 � �u with the rate constant k
for fixed values of m and �� (the same as in Fig. 4) and
three sets of values of �12 and �13. In each case, the two
� values correspond to limited and complete solubil-

ity, respectively. Clearly, there are two distinct re-
gimes with respect to the dependence of 	 on k. When
the latter is large, 	 varies roughly as k0.5 but is nearly
independent of the interaction parameters. This is in-
tuitively reasonable: if the reaction does indeed cause
a conversion from low solubility to complete solubil-
ity, then 	 should be determined largely by the rate of
this conversion, and the precise values of the thermo-
dynamic parameters should be irrelevant. On the
other hand, if k is sufficiently small, then 	 is essen-
tially independent of k but strongly dependent on �12;
there can be no dependence on �13 because the reac-
tion producing species 3 does not occur. In this re-
gime, it is clear that 	 is determined largely by the
solubility of the unconverted polymer, as this pro-
vides the driving force for transport through the liquid
layer.

To complete the analysis, we must know how 	
varies with m and �� in the large-k regime and with
�12, m, and �� in the small-k regime. From the afore-
mentioned arguments, we would expect the value of
m to be irrelevant when k is large, as long as the
diffusivities are held constant. Figure 6 provides some
evidence that this is true. On the other hand, because
�� governs the rate at which the converted polymer
can diffuse to the interface, its value should be impor-
tant. Figure 7 shows that 	 varies roughly as (��)0.5

over a range of conditions; the exponent is actually
somewhat smaller than this, but a value of 0.5 might
be expected theoretically and will be used for simplic-
ity. Turning to the small-k regime, we first note that 	
is rigorously independent of �� for k � 0. This is not
obvious but will be proven in the later discussion.
Here it suffices to say that the dissolution problem is
much simpler when the chemical reaction is absent,
and it can be solved for 	 without a value being
specified for ��. Of course, 	 does still depend on m
and �12 � �; in fact, it varies roughly exponentially
with each, as shown in Figures 8 and 9. More pre-
cisely, ln 	 is roughly linear in the quantity m(� � ��),

Figure 4 Steady-state concentration profiles for reaction-
assisted dissolution (m � 20, �12 � 1.1, �13 � 0.7, �� � 10�4,
k � 0.01).

Figure 5 Computed dissolution rate 	 as a function of
reaction rate constant k for m � 20, �� � 10�4, and three sets
of interaction parameters.

Figure 6 Computed dissolution rate 	 as a function of
reaction rate constant k for �� � 10�5, �12 � 0.8, �13 � 0.6,
and two different values of m.
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where � and � are constants. This is presumably the
way in which the polymer solubility varies with m and
� according to the Flory–Huggins theory.

An overall expression for the dissolution rate 	 as a
function of the system parameters can now be formu-
lated. We first revert to dimensional quantities by
replacing 	, k, and �� with v
�/��, k
�2/��, and
��/��, respectively. The desired expression must
then have the form

	
�

�� � F�k
�2

�� ,
��

�� , m, �� (28)

where � again refers to �12. Recall that �13 has been
shown to be irrelevant and F is a function to be deter-
mined. Equation (28) is basically a statement of the
Buckingham 
 theorem for this problem. Now, be-
cause the expression for 	 that describes the large-k
regime will be negligible for small k, and vice versa,
one can simply add the two formulas to obtain a result

that is valid for all k values. According to the previous
discussion, this should have the form

	
�

�� � A�k��k
�2

�� � 0.5���

��� 0.5

� A�0�exp�m�� � ����

(29)

or more simply

	 � A�k��k���0.5 � A�0�

��


� exp�m�� � ���� (30)

where A(k) and A(0) are constants yet to be determined.
Interestingly, the first term in eq. (30) resembles the
familiar flame speed formula from combustion theory,
whereas the second term describes simple diffusion
through a stagnant liquid film. It is rather remarkable
that each term involves only one of the two diffusivi-
ties.

According to the reptation theory described in ref-
erences 11 and 12, the diffusivity in a solid polymer
network should vary roughly as the inverse square of
the chain length, so we take �� � m�2. The situation
with respect to the liquid phase is not so simple.
According to Flory,13 the diffusivity in a polymer so-
lution at infinite dilution should vary roughly as
m�0.5, but it is not clear that this limiting law will
apply under realistic conditions. Furthermore, the film
thickness 
� in eq. (30) will itself depend on ��, and
hence m, in an unknown manner. Therefore, it will be
assumed here that the ratio ��/
� varies as m��,
where the exponent � is a constant to be determined.
With these stipulations, eq. (30) becomes

	 � B�k�k0.5m�1 � B�0�m��exp�m�� � ���� (31)

where B(k) and B(0) are new constants.
The origins of the temperature dependence of the

dissolution rate can be identified from eq. (31). First,

Figure 9 Computed unassisted dissolution rate 	 as a func-
tion of � for various values of m.

Figure 7 Computed dissolution rate 	 as a function of
solid-phase diffusivity �� for k � 0.1 and four sets of
Flory–Huggins parameters.

Figure 8 Computed unassisted dissolution rate 	 as a func-
tion of m for various values of �.
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rate constant k is expected to involve an ordinary
Arrhenius factor:

k � k0exp��
E�k�

RT� (32)

where E(k) is the activation energy and k0 is the pre-
exponential factor. It is probable that the reptation-
based diffusivity �� also has an activation energy.
This may or may not be significant with respect to
chemically based E(k), but in any case the two activa-
tion energies can simply be combined, according to eq.
(30). The remaining temperature dependence in 	
arises from the fact that the interaction parameter � is
related to the polymer–solvent interchange energy w
by8

� �
w

RT (33)

Making these substitutions in eq. (31) gives

	 � B�k�k0
0.5exp��

E�k�

2RT�m�1 � B�0�m��

exp�m�� � �
w

RT�� (34)

This equation predicts that the overall activation en-
ergy for the process will not be a constant, for two
distinct reasons. First, there will be a change in value
accompanying the transition from the small-k regime
to the large-k regime. Second, even when the first term
in eq. (34) is negligible, the activation energy will vary
as a result of its proportionality to m, which must
depend on the absorbed X-ray dose Q. The way in
which k0 and m vary with Q is the last piece of infor-
mation needed to obtain an expression for 	 solely in
terms of measurable quantities. This leads us to de-
velop a simple model for the structural changes in
PMMA that are produced by exposure to X-ray irra-
diation.

PHOTOCHEMISTRY MODEL

The effects on PMMA of exposure to X-rays and sim-
ilar types of radiation have been studied by a number
of investigators.14–21 Although the picture is not en-
tirely clear, there is a reasonable consensus on the
principal events that occur.22 The initial absorption of
radiation seems to lead to a scission (or chemical
transformation) of the ester side chain of a monomer
segment. This results in an excited polymer molecule
that can be stabilized either by hydrogen abstraction,
which leaves the polymer chain intact, or by a main-
chain scission at the � location. Main-chain scissions

can also occur by a more direct route, but this is not
considered here. Crosslinking reactions, though pos-
sible in PMMA,23,24 are thought not to be important at
the doses normally used in LIGA.25 Thus, we will use
the following very simple and schematic mechanism
for the radiation-induced changes in PMMA:

A 3 B: irradiation and ester-group scission.
B 3 C: stabilization by hydrogen abstraction.
B 3 C � S: main-chain scission.

The species A, B, and C represent an untouched poly-
mer segment (monomer unit), an excited segment
(from which the ester group has been removed), and a
stabilized segment (also missing the ester group), re-
spectively. The species S is not a physical entity but
merely provides a convenient way of keeping count of
the total number of polymer molecules. Denoting the
first-order rate constants for the three reactions as k1,
k2, and k3, respectively, and using the standard steady-
state approximation for species B, one can easily solve
the time-dependent kinetic equations for the concen-
trations of the other species. This gives

A � A0e�k1t (35)

C � A0�1 � e�k1t� (36)

S � S0 �
k3

k2 � k3
A0�1 � e�k1t� (37)

where the subscript 0 denotes the initial value. The
quantity k3/(k2 � k3) is the ratio of the main-chain and
ester-group scission rates and will henceforth be de-
noted by r. In addition, S0 is essentially equal to the
initial concentration of polymer molecules and can
therefore be written as A0W/M0, where W is the mo-
lecular weight of the monomer and M0 is the initial
average molecular weight of the polymer. It follows
that

S � A0� W
M0

� r�1 � e�k1t�� (38)

The average chain length of the polymer molecules at
any time t is therefore

m �
1

W/M0 � r�1 � e�k1t�
(39)

Because the rate constant k1 is proportional to the
radiation intensity (dose rate), the quantity k1t is pro-
portional to the total dose Q, and we can write

1
m �

1
m0

� r�1 � e��Q� (40)
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where � is another constant to be determined. In terms
of the limiting chain length m	 at an infinite dose, eq.
(40) becomes

1
m �

1
m	

� � 1
m	

�
1

m0
�e��Q (41)

where

1
m	

�
1

m0
� r (42)

Equation (41) is equivalent to the result proposed by
Schmalz et al.,25 but the derivation here is much sim-
pler. The exponential dependence on Q contrasts with
the often-used linear relation that is obtained by the
assumption of a fixed scission yield,26–28 although eqs.
(40) and (41) are, of course, linear for small values of
Q.

Because m0 is generally a very large number, eq. (40)
shows that the final chain length will be independent
of the initial value, except when the dose is very small.
Pantenburg et al.29 showed that this approximation is
valid under the conditions normally encountered in
LIGA, so it will be adopted here. Therefore, we obtain

1
m � r�1 � e��Q� � rf�Q� (43)

From eq. (36), the number of side-chain scissions can
be expressed equally simply:

C � A0f�Q� (44)

Equations (43) and (44) are the results needed to com-
plete the development of the preceding section. As
already noted, a fundamental assumption of the
model is that the removal of side chains during irra-
diation renders a polymer molecule susceptible to a
reaction with the solvent. It follows that pre-exponen-
tial factor k0 in eq. (32) should depend on the number
of side chains removed. We would not necessarily
expect k0 to be strictly proportional to C, but a power-
law dependence with an unspecified exponent p is a
reasonable assumption. Using this along with eqs. (43)
and (44) in eq. (34) gives

	 � D�k��f�Q��p/2�1exp��
E�k�

2RT� � D�0�

� �f�Q���exp� 1
rf�Q� �� � �

w
RT�� (45)

where D(0) and D(k) are still more constants. This cum-
bersome expression can be simplified by the combina-
tion of constants wherever possible:

	 � C1�f�Q��C4exp��
C3

T � � C6�f�Q��C2

exp� 1
f�Q� �C7 �

C8

T �� (46)

where

f�Q� � 1 � exp��C5Q� (47)

Equation (46) is actually quite similar to the expression
proposed by Pantenburg et al.,29 the main difference
here being the presence of f(Q) in the argument of the
second exponential. This represents the effect of the
polymer molecular weight on the solubility and is a
key feature of this model. Unfortunately, most of the
constants Ci do not have simple physical meanings,
but it should be noted that

C2 � � (48)

C3 �
E�k�

2R (49)

C4 �
p
2 � 1 (50)

These relations provide at least a limited opportunity
to check the credibility of inferred values for Ci.

DATA FITTING

We now test the suitability of eq. (46) (and, by infer-
ence, the overall model) by fitting it to a set of exper-
imental data. Obviously, because the equation con-
tains a large number of unknown parameters, an ex-
tensive database must be employed if the exercise is to
have any meaning. The data to be used here are the
same as those recently considered by Pantenburg et

Figure 10 Fit of the reaction-assisted dissolution model to
the experimental development rates.
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al.29 and are shown as the discrete points in Figure 10.
As described in more detail in ref. 28, the dissolution
rates at 37°C were obtained for thin sheets of commer-
cially available noncrosslinked PMMA that were ex-
posed at the ELSA accelerator in Bonn, Germany.
Because the deposited dose was nearly constant across
the thickness of each sample, the dissolution rate was
independent of time and could be measured simply by
the weight difference. On the other hand, most of the
data for development temperatures of 21 and 25°C
refer to thick sheets of linear cast PMMA that were
exposed at the Advanced Light Source at Lawrence
Berkeley Laboratory. Dissolution rates were obtained
more indirectly by the periodic measurement of the
developed depth and the numerical differentiation of
the results. The absorbed dose at a given depth was
computed via the LEX code written at Sandia National
Laboratories (Livermore, CA); this allowed each mea-
sured dissolution rate to be associated with a specific
value of the dose. Altogether, dissolution rates were
measured for doses ranging from approximately 0.1 to
9 kJ/cm3, and the rates themselves varied over nearly
six orders of magnitude, from 3 
 10�5 to 13 �m/min.
They should, therefore, provide a reasonable test of
the model.

The data fitting is accomplished via a nonlinear
least-squares technique that makes use of the minimi-
zation routine in a Microsoft Excel spreadsheet. The
logarithms of the dissolution rates are used in the
calculations to ensure that the relative errors are small
even at low doses. The results of this procedure are
shown in Figure 10. The model provides a fairly good
qualitative and quantitative fit to the measured rates
for all conditions, although the results for 37°C are
somewhat inferior. The overall root-mean-square er-
ror in ln 	 is 0.151, so the average relative error in the
predicted rate is approximately 15%. This is almost
certainly within the scatter of the data, although some
of the individual errors are of course considerably
larger.

The optimized values of the constants Ci are given
in Table I. The uncertainty stated with each value is
the amount by which it can be changed (while the
others are held fixed) without the overall root-mean-

square error increasing by more than 10% of its opti-
mum value. Of course, this does not account for the
possibility that several of the constants could be
changed simultaneously by amounts larger than these
without the quality of the fit being degraded.

From eq. (49), activation energy E(k) is approxi-
mately 380 kJ/mol, which is much too large30 for the
kind of saponification reaction hypothesized by
Schmalz et al.5 (Of course, the apparent activation
energy is only half this value.) This suggests that the
reptation process does in fact have a very significant
activation energy of its own. The exponent p in eq. (45)
has a value of 4.2, according to eq. (50). This seems
rather large for a reaction order and suggests that an
exponential dependence of the rate constant k on the
number of side-chain scissions might be more appro-
priate than a power law. In fact, it could be argued
that the removal of the side chains reduces the steric
hindrance to attack by the solvent molecules and is
thus an energetic effect that should be reflected in the
activation energy rather than the pre-exponential fac-
tor. However, making this assumption actually leads
to a substantial degradation in the fit to the data; in
particular, the observed behavior for low doses at
21°C cannot be reproduced.

DISCUSSION

It is clear from Figure 10 that the model is least suc-
cessful in fitting the data at the highest temperature,
especially at low doses. The unwanted curvature in
this region, which is absent at the low temperature, is
responsible for much of the overall error if the obvious
outliers at 21°C are disregarded. To gain some insight
into this problem, it is useful to examine the relative
contributions made to the dissolution rate by the two
terms in eq. (46). A plot of this nature is shown in
Figure 11. Clearly, at both 21 and 25°C, the reaction-
assisted process is the dominant contributor at low

Figure 11 Inferred ratio of the conventional dissolution
rate to the reaction-assisted dissolution rate as a function of
the dose and temperature.

TABLE I
Inferred Values of the Constants in Equation (46)

Parameter Value Units

C1 (3.0 � 0.7) 
 1025 m/s
C2 4.3 � 0.1 None
C3 (2.3 � 0.2) 
 104 K
C4 3.1 � 0.1 None
C5 0.183 � 0.003 cm3/kJ
C6 (6.8 � 0.6) 
 10�7 m/s
C7 13.68 � 0.02 None
C8 (4.21 � 0.09) 
 103 K
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doses, whereas dissolution of the unreacted (but still
irradiated) polymer is the preferred route at high
doses. This appears to reflect the extreme sensitivity of
the polymer solubility to the molecular weight: when
the dose is low, the molecular weight is so large that
dissolution cannot occur until the reaction takes place
and converts the polymer into a highly soluble form.
On the other hand, at high doses, the molecular
weight is low enough to provide good solubility, and
dissolution occurs so quickly that the reaction has
little opportunity to contribute. The situation is very
different at 37°C, however; in this case, the two con-
tributions are roughly comparable at all doses, so the
preceding arguments must no longer apply. This can
be explained by the fact that the argument of the
second exponential in eq. (46) changes sign at a tem-
perature of approximately 35°C if the inferred values
of C7 and C8 are used. Therefore, above this tempera-
ture, the severe decrease in solubility with increasing
polymer size no longer occurs, and the chemical reac-
tion is no longer necessary to dissolve large molecules.
The existence of such a critical temperature is perfectly
consistent with Figure 2 if one recalls that the interac-
tion parameter � is inversely proportional to T [cf. eq.
(33)]. However, because eq. (46) actually describes
increasing solubility with the polymer size at temper-
atures above the critical value, the model is not ex-
pected to be valid at very low doses. This probably
explains the nonmonotonic behavior at 37°C in Figure
11 as well as the unwanted curvature in Figure 10.

Referring again to Figure 11, we find that the reac-
tion-assisted process influences the high-dose dissolu-
tion rate more strongly at 37°C than it does at the
lower temperatures, undoubtedly because of a differ-
ence in activation energies. Figure 12 shows the over-
all apparent activation energy for dissolution as well
as the values for the two contributing processes. The
overall values were obtained from Arrhenius plots
generated from eq. (46) for fixed values of the dose;
the upper limit of the temperature range was set at

35°C to avoid including the anomalous behavior noted
previously. Obviously, the plot mirrors the experi-
mental fact that the overall activation energy varies
strongly with the dose, but only in the upper part of
the range. According to the model, this behavior arises
from both the transition in the dominant process and
the effect of m on the solubility, as noted in the dis-
cussion following eq. (34). Because the activation en-
ergy for unassisted dissolution is relatively small at
high doses, the reaction-assisted process becomes a
more important contributor as the temperature in-
creases.

Despite the complexity of the model presented here,
there are several areas in which it could in principle be
improved. One potential flaw arises from the fact that
the solvent is treated as a single species. By assump-
tion, this species is consumed by its chemical reaction
with the polymer, whereas in reality some compo-
nents of the developer solution would likely remain
intact. It could, therefore, be argued that the model
underestimates the extent of penetration of the solvent
into the solid phase. However, it appears that solvent
penetration plays only a minor role in determining the
rate of dissolution, contrary to intuition. In fact, it can
be proven that the dissolution rate is completely inde-
pendent of any solid-phase dynamics if the postulated
chemical reaction does not occur. To see this, note that
the system involves only two species if there is no
reaction to produce species 3. According to the phase
rule, the equilibrium interfacial concentrations are
then fixed for a given temperature and pressure; they
can be computed before the differential equations gov-
erning the process are solved. There are now only two
such independent equations, so only two boundary
conditions are needed for each phase. For the liquid
phase, we have the pure-solvent condition at the right-
hand boundary in addition to the known composition
at the interface, so the problem is self-contained and
can be solved by itself for the desired flux, that is, the
dissolution rate. This obviously implies that the rate is
independent of the solid-phase diffusivity, and this
observation is consistent with the second term of eq.
(30). In the gel layer, the composition profile simply
adjusts itself to be consistent with the flux determined
by the liquid-phase problem, although it should be
noted that this adjustment is possible only because the
solid-phase outer boundary condition is applied at �
� �	. In any case, it appears that the key effect of the
chemical reaction is to alter the interfacial composition
in a way that favors dissolution. This probably ex-
plains why increases in the rate constant always lead
to increases in the dissolution rate, even as they simul-
taneously reduce the extent of solvent penetration into
the polymer.

Just as the developer should in theory be treated as
a multicomponent liquid, the polymer should be
treated as a mixture of molecules of different sizes.

Figure 12 Activation energies inferred from the fit to the
development rate data.

36 LARSON



Because the solubility, in particular, is such a strong
function of the chain length, the polydispersity of the
polymer could in general have a significant effect on
the dissolution behavior. However, if the range of
initial molecular weights and the range of doses are
such that eq. (43) is an acceptable approximation, then
the polydispersity of the original polymer is no longer
an issue. To take it into account would require a vast
increase in the complexity of the model, and there
seems to be no compelling reason to do so. Essentially,
all existing work in this area does, in fact, assume a
unimodal polymer.

Finally, it could be argued that the use of the Flory–
Huggins theory in modeling LIGA is questionable
because it was originally intended to describe nonpo-
lar systems, and the chemicals composing the GG
developer do not belong to this category. However,
because the simulations of dissolution dynamics have
been used simply to suggest a suitable form for the
rate expression, the details of the thermodynamics are
probably not critical. The gross features of the Flory–
Huggins theory can be assumed to apply well enough
that the general conclusions are still valid.

CONCLUSIONS

The X-ray exposure and development steps of the
LIGA process are quite complex, and the model pre-
sented here is without question a simplification. Un-
like most previous descriptions of polymer dissolu-
tion, however, it is physically based rather than
largely empirical, and it accounts for chemical effects
that appear to be unique to LIGA. The fact that the
model fits the experimental database so well is encour-
aging, although it certainly does not prove that all
details of the model are correct. Perhaps the main
contribution of the model is giving a plausible expla-
nation for the change in the behavior of the dissolution
rate with increasing dose; the data strongly suggest
that there is a transition from one governing process to
another, and the model reproduces this quite well. It is
somewhat unfortunate that the number of adjustable
parameters is so large, but the opportunities to mea-
sure these quantities independently appear to be very
limited. The value inferred for C5 agrees reasonably
well with that quoted by Pantenburg et al.,29 but little
can be said beyond this. In any case, it is unlikely that
the data could be fit successfully with less than the
eight parameters used here. On the other hand, it is
also unlikely that using additional parameters would
result in much improvement, so there is little to be
gained by an attempt to account for other experimen-
tal variables such as the dose rate. At this point, it
would be most helpful to have additional evidence

supporting the existence of the chemical effects pro-
posed by Schmalz et al.,5 and an experimental pro-
gram to accomplish this is currently underway at San-
dia.
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